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Autonomous Hamiltonian systemsAutonomous Hamiltonian systems

Hamilton equations of motion:

Variational equations:

We study N degree of freedom
autonomous Hamiltonian systems of the 
form:

As an example, we consider the Hénon-Heiles system:
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Integration of the variational equationsIntegration of the variational equations

We use two general-purpose numerical
integration algorithms for the integration of 
the whole set of equations:

a) the DOP853 integrator (Hairer et al. 1993, 
http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic 
Runge-Kutta integration scheme of order 8,
b) the TIDES integrator (Barrio 2005, http://gme.unizar.es/software/tides), 
which is based on a Taylor series approximation  

for the solution of system
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Symplectic integration schemesSymplectic integration schemes
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator      , i.e. the solution of 
Hamilton equations of motion, by

HτLe

for appropriate values of constants ci, di. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.

We consider a particular symplectic integrator (Laskar & Robutel, 2001)
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Tangent Map (TM) MethodTangent Map (TM) Method

The Hénon-Heiles system can be split as:

We use symplectic integration schemes for the integrating the 
equations of motion AND the variational equations. 

We approximate the dynamics by the act of Hamiltonians A and B, which 
correspond to the symplectic maps:
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Tangent Map (TM) MethodTangent Map (TM) Method
The system of the Hamilton equations of motion and the variational equations is 
split into two integrable systems which correspond to Hamiltonians A and B.

Let
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Tangent Map (TM) MethodTangent Map (TM) Method
So any symplectic integration scheme used for solving the Hamilton 
equations of motion, which involves the act of Hamiltonians A and B, can 
be extended in order to integrate simultaneously the variational
equations (Skokos & Gerlach 2010, Gerlach & Skokos 2011).
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Chaos detection methodsChaos detection methods
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The Lyapunov exponents of a given orbit characterize the mean 
exponential rate of divergence of trajectories surrounding it. 

λ1=0 Æ Regular motion
λ1π0 Æ Chaotic motion

Following the evolution of k deviation vectors with 2≤k≤2N, we define
(Skokos et al., 2007) the Generalized Alignment Index (GALI) of order k :

ˆ ˆ ˆ∧ ∧ ∧k 1 2 kGALI (t) = w (t)  w (t)  ...  w (t)
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kGALI (t)  e∝Chaotic motion: 

Regular motion on an 
s-dimensional torus with s≤N :
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Application:Application: FPU systemFPU system
N particles Fermi-Pasta-Ulam (FPU) system:

with fixed boundary conditions, β=1.5 and N=4 - 20.

( ) ( )⎡ ⎤
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∑ ∑
N N

2 42
i i+1 i i+1 i

i=1 i=0

1 1 βH = p + q - q + q - q
2 2 4

N=4. Regular motion on 2d torus. Final time t=106.
CPU times ≈ 9 s                                54 s           1m   37s 
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Application:Application: FPU systemFPU system
N=12. Regular motion on 6d torus. Final time t=108.

CPU times ≈ 8 h                             22,5 h   38 h 
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Application:Application: FPU systemFPU system
Efficiency of different algorithms

Final time t=106.

DOP853 δ=10-10

TIDES δ=10-8

SABA2C τ=0.5

DOP853 δ=10-11

TIDES δ=10-10

SABA2C τ=0.1
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ConclusionsConclusions

Numerical schemes based on symplectic integrators can be 

used for the efficient integration of the variational equation of 

multidimensional Hamiltonian systems.
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